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Abstract

Mathematical knowledge involving whole number multiplication and division is integral to understanding multiplicative 

structures such as ratios, slope, rate of change, and proportions, which are important in subsequent mathematical learning. 

In this study, we investigated the effectiveness of a research-based intervention, schema-based instruction (SBI), to teach 

multiplicative whole number word-problem solving to three-fifth-grade students with mathematics disabilities. SBI empha-

sizes the underlying mathematical problem structure, uses visual-schematic diagrams to show how quantities in a problem 

are related, focuses on problem solving procedures grounded in reasoning, and highlights metacognitive strategy knowledge 

to monitor and reflect on the problem-solving process. We used a multiple probe across participants design to evaluate the 

functional relation between the SBI intervention and word-problem solving performance. Immediately following treatment 

as well as 1–3 weeks later, results indicated acquisition and retention of word problem-solving skills by all three students. 

In addition, the percentage of student use of representations (i.e., drawing a diagram, writing a number sentence) increased 

from the baseline to the intervention phases. These findings and their relation to theory, research, and practice are discussed.

Keywords Word-problem solving · Schema-based instruction · Students with mathematics disabilities · Whole number 

multiplication and division word problems

1 Introduction

Word-problem solving, which represents the interplay 

between mathematics and reality, is a staple of mathematical 

school tasks beginning in early grades, for several reasons. 

First, word problems can develop students’ understanding 

of the meaning of operations involved in the problem, and 

consequently, their proficiency with whole number arithme-

tic (Verschaffel et al. 2007). Second, word-problem solving 

promotes critical thinking skills (e.g., reasoning and analy-

sis, argument construction), which are important for school 

success (e.g., Boonen et al. 2013; Depaepe et al. 2010; Hick-

endorff 2013).

Most theoretical models of word-problem solving sug-

gest that it comprises two phases—problem representation/

comprehension and problem solution (e.g., Riley et al. 1983; 

Mayer 1999). Problem representation requires understand-

ing the text of the word problem to be able to identify and 

represent the problem situation (problem schemata knowl-

edge), including specifying the relevant numerical and lin-

guistic information and quantitative relations in the problem. 
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Problem solution entails not only the planning and execution 

of the required mathematical computations (action schemata 

and strategic knowledge), but also aligning the solution with 

the original problem situation, determining the reasonable-

ness of the mathematical outcome, and communicating the 

solution (Depaepe et al. 2010; Mayer and Hegarty 1996). 

The development of word problem solving skills and math-

ematical communication are considered problematic areas 

for many students as well as their teachers (EACEA/Eury-

dice 2011; OECD 2010).

There is evidence that some children, particularly those 

with mathematics disabilities (MD), struggle with word-

problem solving despite being competent in computations 

required to solve word problems (Fuchs et al. 2008; Schu-

macher and Fuchs 2012). Most student difficulties may be 

due to failure to understand the problem text, in order to 

be able to construct a coherent representation of the prob-

lem situation (Boonen et al. 2013; Peake et al. 2015; van 

Garderen 2006). For students with MD, deficits in work-

ing memory capacity, processing speed, language, attentive 

behavior, and organizational skills are likely to interfere 

with their ability to “infer the correct relations between the 

solution-relevant elements from the text base of the word 

problem and integrate them into a coherent visualization of 

the problem situation” (Boonen et al. 2013, p. 16).

Research also indicates that many teachers in elementary 

grades are inadequately prepared to teach problem solving. 

Teachers often do not engage in a discussion of students’ 

possible solution strategies or have students justify their 

solutions (Woodward et al. 2012). Instead, conventional 

problem-solving strategies widely used in U.S. elementary 

classrooms include the key word approach (Bruun 2013; 

Riccomini et al. 2016), which teaches students to use a par-

ticular operation whenever a word problem contains certain 

words or phrases (e.g., addition is the operation whenever 

the question in the word problem includes in all). The key 

word does not promote mathematical reasoning, which is at 

the core of contemporary approaches to word-problem solv-

ing (Karp et al. 2014). Furthermore, this approach does not 

have empirical evidence to support its use (Riccomini et al. 

2016). Another commonly emphasized instructional strategy 

involves having students draw a picture (Bruun 2013). How-

ever, on the one hand, many students with MD demonstrate 

difficulties in using or generating visual representations to 

express their mathematical thinking. On the other hand, 

teachers may not be aware that “visual-schematic represen-

tations should be used to support the first phase of the word 

problem solving process (i.e., problem comprehension) and 

that arithmetical representations are only appropriate in the 

problem solution phase” (Boonen et al. 2016, p. 60).

The purpose of the current study was to explore the 

effectiveness of a research-based intervention, schema-

based instruction (SBI), designed to help elementary school 

students with MD make sense of their reasoning related to 

multiplicative word-problem solving. Building mathematical 

proficiency with whole number multiplication and division 

is a key focus of mathematics instruction in Grades 3–5 as 

reflected in their presence in the Operations and Algebraic 

Thinking domain in the Common Core State Standards for 

Mathematics [CCSS-M; National Governors Association 

Center for Best Practices (NGA) and Council of Chief State 

School Officers (CCSSO) 2010]. Mathematical knowledge 

involving whole number multiplication and division is inte-

gral to understanding multiplicative structures such as ratios, 

slope, rate of change, and proportions, which are important 

in subsequent mathematical study (Siemon et al. 2005).

2  Theoretical background

In the following, we examine literature on problem types 

involving the multiplicative structure to understand the dif-

ferences among problem types and why they are important. 

We also review the theoretical framework for SBI in terms 

of the key components for improving word problem solving 

performance of students with MD.

Researchers and policy documents (e.g., CCSS-M) have 

classified multiplication and division problems based on 

their semantic structures (i.e., relations among quantities 

expressed in words) as either asymmetrical or symmetri-

cal (Carpenter et al. 2015; Chapin and Johnson 2000). In 

asymmetrical multiplication problems, the role of quantities 

(i.e., factors) is not interchangeable, whereas quantities have 

interchangeable roles in symmetrical multiplication prob-

lems. Asymmetrical multiplication problems often involve 

equal grouping and rate situations, in which the two factors 

(i.e., 3 and 2 in a multiplication equation 3 × 2 = 6) refer to 

different entities (number of equal-size groups/number of 

units and the number of things in a group/unit rate) (see 

Greer 1992). The number of groups or units acts as a mul-

tiplier. When the number of groups/units or number in each 

group/unit rate is unknown, the situation results in a problem 

being classified as an equal groups division problem. Sym-

metrical multiplication problems often involve arrays where 

either the number of rows or number of columns can be 

the multiplier. The two factors also provide a decontextual-

ized row-by-column composite to illustrate the commuta-

tive property of multiplication, thus providing the foundation 

for understanding the calculation of area (see Battista et al. 

1998). Researchers note that helping students shift from 

additive to multiplicative thinking can be promoted by con-

ceptualizing multiplication as a rectangular array (Cullen 

et al. 2018; Downton and Sullivan 2017).

SBI is an evidence-based practice for improving the word-

problem solving performance of students struggling in math-

ematics (Jitendra et al. 2015a, 2016). It is a multicomponent 
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intervention grounded in schema theory (see Marshall 

1995). From schema theory, understanding arithmetic word 

problems involves recognizing the underlying problem 

(semantic) structure (e.g., change, compare). Knowledge 

of the semantic network structures, which consist of ele-

ments and relations between those elements, is critical to 

constructing a representation that is coherent and complete. 

The SBI approach to solving word problems is also guided 

by cognitive models of mathematical problem solving that 

focus on knowledge of procedures (e.g., problem representa-

tion, planning) for a given class of problems (see Marshall 

1995; Mayer 1999). Teachers are guided to use instructional 

practices (e.g., guided questions to engage students in con-

versations about their thinking and problem solving) to help 

students recognize common underlying problem structures, 

represent problems using visual-schematic diagrams, plan 

how to solve problems, and solve and check the reasona-

bleness of answers. In addition, SBI incorporates several 

instructional features (e.g., explicit instruction and opportu-

nities for feedback and practice) that are known to promote 

problem solving for students with MD (Gersten et al. 2009). 

For example, through modeling and think-aloud, teachers 

draw students’ attention to important features of problems 

and aspects of proficient problem solving. Furthermore, 

integral to SBI is an emphasis on metacognition strategy 

knowledge; students are prompted to “think about what they 

are doing and why they are doing it, evaluate the steps they 

are taking to solve the problem, and connect new concepts 

to what they already know” (Woodward et al. 2012, p. 17). 

These practices are highlighted in the What Works Clearing-

house’s (WWC) research synthesis on improving students’ 

mathematical problem-solving performance (Woodward 

et al. 2012) and the CCSS-M standards for mathematical 

practice (e.g., look for and make use of structure). The sig-

nificance of these practices in developing students’ problem 

solving and mathematical reasoning skills is irrefutable (see 

Hulbert et al. 2017).

In this study, we leveraged our work on SBI that has 

focused primarily on teaching students to solve additive 

whole number word problems (e.g., Jitendra et al. 2013) and 

word problems involving ratios, proportions, and percent-

ages (e.g., Jitendra et al. 2015b) to develop the SBI program 

for teaching multiplicative word-problem solving.

3  Prior intervention research on whole 
number multiplicative word‑problem 
solving

The majority of research on multiplicative word-problem 

solving with elementary school students struggling in math-

ematics has been conducted by Xin and colleagues. They 

designed the Conceptual Model-Based Problem Solving 

(COMPS) program that emphasizes a mathematical model 

(factor × factor = product) for representing multiplicative 

word problems involving equal groups and multiplicative 

comparison. For both problem types, the COMPS instruc-

tional paradigm included a model-lead-test procedure with 

explicit modeling and explanation in conjunction with 

teacher-student interaction and on-going performance moni-

toring with corrective feedback. Introductory lessons used 

story situations without any unknowns to identify the prob-

lem type and represent the quantities and relations in each 

problem type (e.g., unit rate × number of units = product) 

using the conceptual model diagrams. Next, students were 

taught to use a problem solving checklist to represent and 

solve problems with unknowns. Word-problem story gram-

mar questions (e.g., Which sentence or question tells about 

the unit rate, number of units, total or product?) cued stu-

dents to focus on the three key features in each problem type.

Three single subject multiple probe across participants 

design studies by Xin and colleagues demonstrated largely 

positive results on multiplicative word problem solving 

measures for fourth- and fifth-grade students with learn-

ing problems after receiving the COMPS intervention (Xin 

2008; Xin et al. 2008; Xin and Zhang 2009). Despite the 

positive outcomes for students in these single-case design 

(SCD) studies, findings are limited for several reasons. First, 

given that the intervention phase in all three studies included 

fewer than three data points, this phase cannot be used to 

demonstrate existence or lack of an effect (Kratochwill et al. 

2013). Second, Xin et al. (2008) included only two baseline 

conditions and therefore did not establish three attempts to 

demonstrate an intervention effect at three different points 

in time, which is essential to meet the WWC SCD standards 

(2014). Third, the inclusion criterion for study eligibility in 

Xin and Zhang (2009) was a score below the 30th percen-

tile on a standardized measure of problem solving; however, 

one participant performed within the average range (50th 

percentile) making it difficult to determine whether the par-

ticipant needed remedial instruction. Fourth, maintenance 

of skills was measured only between 4 days to 1 week after 

intervention, and maintenance of skills was not consistently 

demonstrated on maintenance measures. Last, none of the 

studies documented experimental control for the dependent 

variable (e.g., no inter-rater agreement was assessed for each 

case on each outcome variable).

By contrast, the next two studies employed randomized 

controlled trials (RCTs) to address the external validity of 

findings that were limited in the SCD studies. Xin et al. 

(2011) randomly assigned 29 students with learning disabili-

ties or those at risk for mathematics difficulties to control or 

COMPS intervention. Intervention students improved signif-

icantly more than control on an experimental word problem-

solving measure at immediate posttest and on 1- to 2-week 

follow-up tests. On a standardized measure of mathematics 
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problem solving, the difference between conditions was not 

significant.

Xin et al. (2017) extended prior work on COMPS by 

designing an intelligent tutor-assisted intervention pro-

gram, Please Go Bring Me (PGBM), which provided the 

foundation for understanding whole number multiplication 

and division before students received word-problem solving 

instruction. They randomly assigned 17 students to one-on-

one PGBM-COMPS tutoring or whole group control (tradi-

tional mathematics instruction) conditions. Results indicated 

that students in the COMPS condition outperformed students 

in the control condition on immediate and delayed posttests 

(1–2 weeks later). On a standardized measure of problem 

solving, only intervention students’ scores improved signifi-

cantly from pretest to posttest on a standardized measure 

of problem solving. These RCT studies provide the basis 

for tentatively concluding that COMPS enhances multipli-

cative word problem-solving performance of students with 

MD. The sample size in each study was small; researchers 

did not address differential attrition across conditions; and 

they assessed maintenance of problem-solving effects only 

1–2 weeks following the end of the intervention.

4  The present study

Given the growing evidence base for interventions such 

as SBI that incorporate practices (identifying the problem 

structure and using visual representations) articulated in 

contemporary approaches to word-problem solving (Boonen 

et al. 2013; Carpenter et al. 2015), the goal of this study 

was to advance this line of research for students with MD. 

We highlight four features of our study that merit justifi-

cation. First, our intervention was remedial in nature and 

targeted fifth-grade students with MD, who have persistent 

and intractable difficulties in multiplicative word-problem 

solving. Evidence indicates that the multiplication skills 

of middle school students with MD is similar to typically 

achieving third-graders (Mabbott and Bisanz 2008) and that 

without instruction focused on both conceptual and proce-

dural understanding, these students’ difficulties will persist 

into later years.

Second, in addition to participants in the study being 

district-identified as having specific learning disabilities in 

mathematics using the IQ-achievement discrepancy crite-

ria, we operationalized MD as scores below the 10th per-

centile on a standardized mathematics achievement test. 

We chose this lower cut score to include only students with 

MD who have persistent underachievement in mathemat-

ics. This operationalization of MD is more reliable than 

the sole reliance on the IQ-achievement discrepancy that 

might result in including students with heterogeneous abili-

ties in mathematics in general (Mazzocco and Myers 2003) 

and word-problem solving in particular (Tolar et al. 2016). 

Third, unlike Xin and colleagues, we focused on both asym-

metrical (i.e., equal groups, rates) and symmetrical multi-

plicative word-problems (i.e., arrays). These problem types 

are foundational multiplicative structures emphasized in 

the CCSS-M in early grades that participants in this study 

had not yet mastered. Fourth, we used single-case research 

design to focus on individual differences given the severity 

of MD for the three students in this study.

Through the use of a multiple probe across participants 

design, which focuses on individual performance and pro-

vides “strong evidence of causal relations between vari-

ables” (Barlow and Nock 2009, p. 20), we aimed to answer 

the following four questions: (a) Is there a functional relation 

between the SBI intervention and multiplicative word prob-

lem-solving performance of fifth-grade students with MD? 

(b) Do fifth-grade students with MD maintain their improved 

word problem-solving performance 2–3 weeks after the end 

of the intervention? (c) To what extent do fifth-grade stu-

dents with MD apply SBI representational strategies (e.g., 

drawing diagrams, writing a number sentence)? (d) To what 

extent do fifth-grade students with MD view SBI as benefi-

cial in learning to solve multiplicative word problems?

5  Method

5.1  Participants

Following approval from the University Institutional Review 

Board, parental written consent, and student verbal assent, 

we recruited students from an elementary school located in 

a suburban area outside a major Upper Midwest city in the 

United States. A special education teacher nominated 10 

students with specific learning disabilities in mathematics. 

Of these students, we selected four fifth-grade students who 

met the following criteria: (a) low mathematics performance 

as evidenced by scores below the 10th percentile on the 

mathematics subtest of the state assessment and (b) demon-

strated competency on a multiplication facts preassessment 

(scores of 80% or higher), but scored 50% or lower on a 

multiplicative word problem-solving preassessment created 

by researchers. One student withdrew from the study prior to 

receiving the intervention due to behavioral issues. Table 1 

provides a summary of student demographic information.

5.2  Setting

All sessions of this study were conducted in a resource 

classroom and occurred during the students’ mathematics 

instructional time. The classroom was partitioned into three 

semi-private teaching spaces. Three special education teach-

ers provided instruction in these spaces to small groups of 
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2–4 students, whereas the first author provided instruction 

to each participating student in the larger, open space of the 

classroom.

5.3  Materials

5.3.1  Preassessment

Prior to participating in the study, students completed a 

preassessment that consisted of 20 multiplication facts 

(i.e., multiples of 2 s through 10 s) and nine word prob-

lems involving whole number multiplication and division 

(see Assessments). If a student scored 80% or more on the 

multiplication facts test and scored 50% or less on the word-

problem solving, they qualified to participate in the study.

5.3.2  Assessments

We developed multiple alternate forms of a word problem-

solving test (WPS) that included nine one-step single- and 

two-digit multiplication and division word problems consist-

ing of multiples of 2 s through 10 s as factors, which varied 

in terms of problem type (i.e., equal groups, unit rate, and 

array) and the unknown position in a problem (see Table 2). 

Baseline, intervention, and maintenance tests included the 

same three problem types, but were unique in that the story 

contexts and quantities were not repeated across or within 

phases.

5.3.3  Instructional lessons

The SBI intervention program used in this study includes 

a 6-lesson instructional unit on solving equal groups, unit 

rate, and array word problems. Although the three types of 

word problems share the same underlying problem structure 

(factor × factor = product), they differ in their semantic fea-

tures. Equal groups word problems include the number of 

groups (factor), size of a group or number of objects in one 

group (factor), and total number of objects (product). Unit 

rate word problems include the following features: number 

Table 1  Student demographic information

SLD specific learning disabilities
a Woodcock-Johnson III Tests of Cognitive Abilities (Woodcock et al. 2001)

Student Grade Gender Primary 

disability

Race Full Scale IQa Age (yrs.) Eligible for free/

reduced-price lunch 

Fourth-grade state 

mathematics assessment 

(percentile)

Luke 5th Male SLD Asian 94 11.2 Yes 528 (8th)

Sean 5th Male SLD Black 95 11.1 Yes 529 (9th)

Dustin 5th Male SLD Black 79 10.9 Yes 518 (3rd)

Table 2  Sample problems on the word problem-solving tests

Problem type Sample problem

Equal groups

 Number of groups unknown Karen puts 24 pencils in cases. If she puts 8 pencils in each case, how many cases does Karen need?

 Size of a group unknown 90 candles are packaged in 10 boxes. If each box has the same number of candles, how many candles are there 

in each box?

 Product unknown The coach gave 5 softballs to each one of the 10 players on the team. How many softballs did the coach give to 

the team?

Unit rate

 Number of units unknown Riley had 10 oz of pecans. To make pecan cookies, she put 2 oz of pecans in each cookie. How many pecan 

cookies did she make?

 Unit rate unknown A plant grows the same number of inches each month. If the plant is 6 inches tall after 3 months, how many 

inches did it grow each month?

 Product unknown A carpenter made 7 shelves that are 2 feet long each. How many feet of board did he use to make the shelves?

Array

 Number of columns unknown 50 stickers are arranged in 10 equal rows. How many stickers are there in each row?

 Number of rows unknown 36 members of the school choir are standing on the risers. If 9 members stand on each riser, then how many 

rows of risers do the school choir form?

 Product unknown The colored pencils are arranged in 3 rows with 10 in each row. How many colored pencils are there in all?
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of units (factor), unit rate (factor), and total (product). Spe-

cifically, the unit rate (i.e., composed unit) involves recog-

nizable quantities (e.g., miles per hour). Array problems 

represent a model for equal groups structure, in which a 

set of objects is arranged in a rectangular grouping (equal 

groups of rows and columns). Key features of array prob-

lems include the number of rows (factor), number of col-

umns or number of objects in each row (factor), and total 

number of objects (product).

The lessons in the SBI program are highly specified such 

that a detailed teacher guide supports teachers in imple-

menting tasks to develop students’ problem-solving skills 

(see Appendix A in the online supplementary materials 

for a sample excerpt of script from Lesson 2 for solving an 

equal groups problem). Furthermore, the relations among 

problem types in terms of semantic variations are made 

explicit across lessons (see Appendix A for sample excerpts 

of scripts from introductory Lessons 3 and 5 focusing on 

the meaning of rates and arrays). Student materials include 

a workbook with whole number multiplicative story situa-

tions (with no unknown information) and word problems, 

visual schematic diagrams (one for each problem type) to 

help with organization of information in the word prob-

lem, and problem-solving checklists (FOPS; F—Find the 

problem type, O—Organize the information in the problem 

using a diagram, P—Plan to solve the problem, S—Solve 

the problem) to prompt students to monitor and reflect on 

the problem-solving process.

5.4  Dependent variable

The dependent variable was percentage accuracy on the 

WPS test, measured by the percentage of correctly solved 

problems in each testing session. Using an answer key, 

responses were scored for both a correct number sentence 

or equation (e.g., 5 × 4 = n) and an answer that included 

the numerical value and appropriate unit (n = 20 brownies), 

with one point awarded for each response. Partial credit 

(0.5 points) for the answer was possible if the numerical 

value was correct and the unit was not appropriate (or not 

included) and vice versa. A total of 18 points were possi-

ble in each testing session across nine word problems. The 

criterion for mastery of word-problem solving for a student 

was achieving at least 80% or more correct on the WPS test.

We also examined student’s written work on tests in all 

phases to determine the extent to which they employed rep-

resentational strategies such as drawing a diagram and writ-

ing a number sentence. Percentage of each type of represen-

tation was measured by recording the number of times the 

specific representation was used in each phase divided by the 

total number of possible times. Furthermore, we examined 

the types of diagrams used.

5.5  Experimental design

A single subject multiple test across participants design 

was used to examine the functional relation between the 

SBI intervention and students’ word-problem solving per-

formance. We chose a single-case research design because 

the approach is methodologically well suited to investigate 

single cases with respect to understanding how each student 

with MD responds to the intervention (Gast and Ledford 

2014). The implementation of the design adhered to the 

SCD standards for methodological rigor established by the 

WWC (2014). The staggered introduction of participants to 

the intervention is a defining feature of the multiple probe 

design (Gast and Ledford 2014). The study included three 

experimental phases of baseline, intervention, and main-

tenance. Following a stable baseline of problem-solving 

performance, one student was introduced to the SBI inter-

vention and the other two students remained in baseline con-

dition (see Sect. 5.6.2 Baseline), thus serving as a control for 

the first student. The second student was introduced to the 

intervention after the first participant showed an accelerat-

ing trend for the percentage of correctly solved problems in 

the intervention phase, whereas the third student continued 

in baseline. The same procedure was followed until the last 

student entered the intervention condition. The design ended 

with a maintenance phase.

5.6  Procedures

5.6.1  Testing

Test sessions followed identical procedures during the base-

line, intervention, and maintenance phases. During the test 

sessions, students were provided with a test booklet and pen-

cil. The test directions and items were read to the students. 

Students were asked to show their work for each item and 

instructed to write not only the number sentence or equa-

tion but also the answer (see dependent variable). All test 

sessions were conducted individually and no prompting or 

feedback was provided. Each student had the opportunity 

to receive a sticker as a reward at the end of each test ses-

sion and select a reinforcer from a menu (e.g., gel pens) in 

exchange for five stickers.

5.6.2  Baseline

Participants received core mathematics instruction in their 

inclusive fifth-grade classroom using the district-mandated 

textbook, Everyday Mathematics 5 (Bell et al. 2015) and 

completed supplementary mathematics activities delivered 

by the special education teacher during their resource-room 

time. During baseline, each participant completed the WPS 

tests and did not receive any instruction related to this study. 
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All participants completed a minimum of five baseline test-

ing sessions.

5.6.3  Intervention

The first author implemented the lesson plans with each par-

ticipant individually four times a week, with each instruc-

tional session lasting approximately 30 min. Each lesson 

took a minimum of two instructional sessions to complete so 

that students received a total of 12–14 instructional sessions. 

The SBI approach in this study included explicit instruction 

with the teacher modeling a think-aloud procedure, as well 

as interactive discussions with the student. The first lesson 

that introduced each problem type focused on the meaning 

of equal groups, unit rate, or arrays, which are critical to 

understanding and applying these concepts to solving word 

problems in subsequent lessons (see Appendix A). This les-

son also used story situations with no unknown information 

with the aim of helping students understand and identify the 

problem structure by highlighting the key elements and the 

mathematical relations between these elements (factor × fac-

tor = product). Multiple representations were used to help 

students understand the mathematical relations between 

quantities in the story, with the Equal Groups Diagram illus-

trating how to model the mathematical equation by repre-

senting the three quantities in the diagram (see Appendix B, 

Fig. 1 in the online supplementary materials). Next, students 

learned to check whether the equation was true using a two-

pan balance scale as an artefact related to the meaning of 

an equal sign.

The goal of subsequent SBI lessons was applying prob-

lem-solving procedures for a given class of problems, 

including checks to monitor and reflect on the problem-solv-

ing process. Through discussions and questions to scaffold 

a solution process, students learned to do the following: (a) 

identify the type of problem (e.g., equal groups, array) by 

reading, retelling, and examining information in the problem 

as well as thinking about how problems within and across 

types are similar or different, thus connecting the problem 

to already solved problems, (b) represent critical informa-

tion in the problem using an appropriate representation that 

illustrates the relations between relevant quantities in the 

problem, (c) determine what strategies to use to solve the 

mathematical equation, (d) solve and check the reasonable-

ness of the solution as well as check whether the equation 

was true (see Appendix A for a sample excerpt of script 

for Lesson 2 for solving an equal groups problem). During 

the intervention phase, a WPS test was administered after 

students completed a lesson on solving word problems with 

unknowns. No testing was done at the end of the first lesson 

(two instructional sessions) when students learned to iden-

tify the problem type in story situations with no unknowns.

5.6.4  Maintenance

Procedures in maintenance sessions were the same as those 

in baseline. All students completed two testing sessions in 

the maintenance phase, with Luke and Sean administered 

the WPS tests at 2 and 3 weeks after the termination of 

the intervention. Dustin was administered the WPS tests 1 

and 2 weeks after the final intervention phase assessment.

5.7  Interrater agreement

Two researchers collected interrater agreement (IRA) data 

for the scoring of WPS tests in all three phases of the 

study. IRA was established based on the percentage accu-

racy and percentage representations (diagrams and number 

sentences) for 30% of all baseline, intervention, and main-

tenance sessions. We calculated IRA using Cohen’s kappa, 

which adjusts for chance agreement between raters (Cohen 

1960). For percentage accuracy, Cohen’s kappa was 0.90 

for baseline, 0.93 for intervention, and 0.86 for mainte-

nance. For the two types of representations, Cohen’s kappa 

was 1 for all three phases.

5.8  Treatment integrity

Treatment integrity was collected for 30% of the instruc-

tional sessions during the intervention phase. The third 

author assessed the instructor’s adherence to the SBI 

intervention using a checklist that consisted of 13 items 

corresponding to critical elements of SBI (e.g., identifies 

the problem type, discusses how the problem is similar to 

or different from previously solved problems) and seven 

items measuring general instructional behaviors (e.g., sets 

the purpose for the lesson, provides feedback). The mean 

treatment integrity was 94% (range = 80%–100%).

5.9  Social validity

Students completed a survey following the completion of 

the intervention to indicate their level of agreement with 

statements about the intervention and materials (e.g., use 

of diagrams, problem solving checklists) in helping them 

understand and solve word problems and also whether 

they would recommend the intervention to others and con-

tinue to use it. Students responded to eight items using a 

4-point scale (1 = strongly disagree, 2 = somewhat disa-

gree, 3 = somewhat agree, 4 = strongly agree). In addition, 

two open-ended questions provided an opportunity for stu-

dents to report what they liked the most and least about 

the intervention.
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Fig. 1  Percentage correct of WPS test scores across the baseline, intervention, and maintenance phases for participants
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5.10  Data analysis

We used visual analysis and two effect size indices to ana-

lyze the data. We visually inspected the graphed data for 

level and trend (Gast and Ledford 2014). For effect size 

measures, we calculated the percentage of nonoverlapping 

data (PND; Scruggs et al. 1987) and Tau-U (Parker et al. 

2011) to determine the strength of the intervention. PND 

was calculated as the number of data points in the inter-

vention phase that exceeded the highest data point in the 

baseline phase divided by the total number of data points 

in the intervention phase and multiplied by 100. PND 

scores ranging from 90 to 100% represent a very effec-

tive treatment; 70%–89% an effective treatment; 50%–69% 

a questionable treatment; and below 50% an ineffective 

treatment (Scruggs et al. 1987). Because PND does not 

assess trend between phases, we also computed Tau-U, a 

non-parametrical statistical evaluation of effect size, which 

combines nonverlap between two phases with intervention 

phase trend. Tau-U scores between 0.93 and 1 are inter-

preted as a large effect; 0.66–0.92 a medium effect; and 

0–0.65 a small effect (Parker et al. 2011).

6  Results

6.1  Mathematical problem solving performance

Figure 1 shows the effect of SBI on word problem-solving 

performance for the three students. All three students dem-

onstrated markedly higher performance solving multipli-

cative word problems when compared to their baseline 

scores. Visual analysis of the graph shows a functional 

relationship between SBI and the percentage accuracy 

for solving multiplicative word problems with interven-

tion staggered across students in a typical multiple probe 

design.

6.1.1  Luke

During baseline, Luke showed low levels of respond-

ing and earned an average accuracy score of 34.7% 

(range = 29.1%–37.5%). After exhibiting a stable baseline, 

Luke’s intervention scores increased above his baseline lev-

els, illustrating an immediate change in level between con-

ditions, and also showed an increasing trend. The average 

accuracy was 91.9% (range = 72.2%–100%), an increase of 

57.2% from baseline. The PND between Luke’s baseline and 

intervention performance was 100% and Tau-U for the inter-

vention was 1.0,  CI90 [0.54, 1.45], indicating that the inter-

vention was highly effective. Luke scored 90% of problems 

correct on two consecutive sessions of maintenance follow-

ing intervention (2 and 3 weeks later).

6.1.2  Sean

Sean’s performance during baseline was relatively low, 

with a mean accuracy of 43% (range = 34.7%–55.5%). Upon 

beginning intervention, his scores rose above baseline levels, 

indicating an immediate change in level between the two 

conditions, and showed an increasing trend. Sean scored 

88.7% average accuracy (range = 80.5%–97.2%) across five 

sessions of intervention, an increase of 45.7% from baseline. 

The PND between Sean’s baseline and intervention scores 

was 100% and Tau-U was 1.0,  CI90 [0.58, 1.45], classifying 

the intervention as highly effective. Sean earned an aver-

age accuracy of 92.4% across two consecutive sessions of 

maintenance (2 and 3 weeks following the final interven-

tion assessment), illustrating improved performance from 

his intervention sessions.

6.1.3  Dustin

During baseline, Dustin earned an average accuracy of 

10.2% (range = 0%–16.6%). Following baseline, Dustin’s 

intervention scores increased above his baseline scores, 

illustrating an immediate change in level between condi-

tions, and also showed an increasing trend. On average, his 

accuracy score was 72.4% (range = 40.2%–93%) during 

intervention, an increase of 62.2% from baseline. The PND 

between Dustin’s baseline and intervention scores was 100% 

and Tau-U was 1.0,  CI90 [0.54, 1.45], indicating that the 

intervention was highly effective. Dustin earned an average 

accuracy score of 84.7% across two consecutive sessions 

of maintenance, illustrating improved performance from his 

intervention sessions.

Table 3  Percentage of representational strategy use across phases by 

student

All drawings in baseline included a grouping model; all drawings in 

intervention and maintenance phases were visual-schematic diagrams

Phase Baseline Intervention Maintenance

Luke

 Drawing a diagram 0.0 95.6 100.0

 Writing a number sentence 100.0 100.0 100.0

Sean

 Drawing a diagram 4.4 62.2 11.1

 Writing a number sentence 2.2 100.0 100.0

Dustin

 Drawing a diagram 20.0 89.0 83.5

 Writing a number sentence 2.2 93.5 100.0
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6.2  Representational strategy use

Table 3 displays the mean percentage of representational strat-

egy use during baseline, intervention, and maintenance phases. 

Data on drawing a diagram showed an increase from an aver-

age of 0% for Luke, 4.4% (range = 0%–11%) for Sean, and 

20.0% (range = 0%–44%) for Dustin during baseline to 95.6% 

(range = 89%–100%) for Luke, 62.2% (range = 0%–100%) for 

Sean, and 89.0% (range = 67%–100%) for Dustin by the end of 

intervention. During two consecutive sessions of maintenance 

following the intervention, Luke and Dustin scored 100% and 

83.5% respectively, whereas Sean’s mean score decreased from 

intervention to 11%.

Data on writing a number sentence showed an average 

score of 100% for Luke in the three phases. It is interesting that 

only about one-third of the number sentences were accurate 

during baseline compared to an average accuracy of 93% and 

89% during intervention and maintenance sessions. In contrast, 

Sean and Dustin each earned an average score of 2.2% during 

baseline. Sean’s average intervention performance increased 

to 100%, and he scored 100% on two consecutive sessions 

of maintenance. Dustin’s mean intervention and maintenance 

scores also increased to 93.5% (range = 67%–100%) and 100%.

6.3  Social validity

Results of the social validity survey indicated that students 

rated the diagrams item as strongly agree or somewhat agree 

(M = 3.8), indicating they felt the diagrams were very help-

ful in organizing information and solving multiplication and 

division word problems. The mean rating for acceptability 

of the diagrams used in the intervention (i.e., continue to use 

the diagrams, recommend using the diagrams when teach-

ing word-problem solving to other students) was 3.3. With 

regard to the problem-solving checklists, the mean rating 

was 3.2, indicating that they were helpful in checking stu-

dents’ understanding of how to solve word problems. The 

mean rating for acceptability of the problem-solving check-

lists was 3.0.

On the open-ended questions, two students reported lik-

ing the diagrams and problem-solving checklists the most 

and another reported liking learning to solve word problems. 

Responses to what they liked the least varied from having to 

complete multiple WPS tests in the study, to discriminating 

between the size of a group and the number of groups in 

equal groups problems, and learning about array problems.

7  Discussion

In this study, we evaluated the effectiveness of SBI to teach 

whole number multiplication and division within the con-

text of word problems. Through visual analysis and two 

effect size measures, we demonstrated a functional relation 

between the SBI intervention and the three students’ per-

centage accuracy scores solving multiplicative word prob-

lems. All three students also demonstrated retention of these 

skills (scoring 85% or greater average accuracy across two 

sessions of maintenance) 1–3 weeks following the termina-

tion of the intervention. Moreover, percentage of represen-

tational strategy use increased over the course of the study. 

All students began with a limited understanding of how 

to use a diagram to represent the problem situation. After 

intervention, all students were regularly using diagrams and 

writing number sentences correctly to solve multiplicative 

word problems.

The results of this study are consistent with previous 

research regarding the benefits of SBI for teaching students 

with MD (see Jitendra et al. 2015b), and offer evidence 

demonstrating the value of SBI for fifth-grade students 

with MD in mathematics in learning to solve multiplicative 

word problems following one-on-one instruction. In addi-

tion, our findings extend the work of Xin and colleagues 

(e.g., Xin et al. 2008, 2011) suggesting that SBI can pro-

duce comparable outcomes to the COMPS intervention for 

older elementary students with MD who struggle with whole 

number multiplication and division word-problem solving. 

Students in our study successfully demonstrated the ability 

to represent the problem situation and model the mathemat-

ics on the assessments, and maintained their problem solving 

performance 1–3 weeks after the end of the intervention; 

this approach illustrates the design principles of the SBI 

approach used successfully with students at risk for MD and 

their not at-risk peers (Jitendra et al. 2013, 2015b).

7.1  Relation to theory, research, and practice

This exploratory study provides preliminary evidence of 

the potentially positive effects of SBI for students with MD 

based on elements of best practice from mathematics edu-

cation and special education. What are some possible rea-

sons for improved problem-solving performance of students 

with MD? First, SBI with its focus on the problem structure 

required students to categorize problems into a few problems 

types by discerning the relevant quantities and their rela-

tions, which possibly reduced working memory load, allow-

ing for more efficient and effective learning (Kalyuga 2009). 

Second, visual-schematic diagrams in SBI may have helped 

students organize information in the problem, with the out-

come of further reducing the cognitive memory demands 

and enabling the learner to focus on problem solution. 

Evidence suggests that visual representational approaches 

improve mathematical problem solving (Rellensmann et al. 

2017). Third, SBI promoted meaningful learning in that 

explicit instruction and appropriate guidance (e.g., teacher 

think-aloud procedures illustrating how the problem can be 
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solved), which were provided throughout the learning pro-

cess, may have enabled the learner to understand and solve 

multiplicative word problems. Prior research also supports 

the importance of making mathematical practices explicit to 

promote student learning (e.g., Clarke et al. 2016; Selling 

2016). Integrating these mathematical practices in SBI with 

mathematics content (whole number multiplication and divi-

sion) is also supported by the CCSS-M (NGA and CCSSO 

2010).

An examination of representation data in Table 3 indi-

cates a marked improvement in participants’ use of diagrams 

and number sentences. Prior to SBI, participants either did 

not use visual models to represent the problem situation 

or used a grouping model, in which multiplication is con-

ceptualized as the joining of equal groups. However, this 

model was often incomplete or applied inaccurately, espe-

cially for situations involving division problems, indicating 

that students did not have complete understanding of the 

grouping model. When students modeled the mathematics 

using number sentences, the majority of the sentences were 

not accurate. Following the intervention, students showed 

increased use of effective and accurate visual-schematic 

representations. These findings are encouraging in light 

of past research indicating that students with MD are less 

likely to construct viable representations on their own (van 

Garderen and Montague 2003). Although all three partici-

pants maintained the strategy of writing number sentences to 

model the mathematics, only two students continued to use 

visual-schematic diagrams. One possible explanation for the 

substantial decrease (about 50%) in visual representations 

during the maintenance phase for Sean is that he internal-

ized the problem schema so that generating a diagram was 

not necessary as he was able to solve the problem accurately 

and efficiently using the arithmetical representation. This 

finding was corroborated by his accurate word-problem solv-

ing average score of 92.4% in the maintenance phase. An 

alternative explanation is that the strategy of using a diagram 

when solving a problem in early grades may be perceived as 

inappropriate in later grades, which is a common disposition 

among older students with MD (van Garderen and Scheu-

ermann 2014).

SBI encouraged students to make sense of their reasoning 

related to whole number arithmetic problem solving. Rea-

soning required understanding the quantities and their rela-

tionships in problem situations and representing the infor-

mation using coherent visual-schematic diagrams, as well as 

“considering the units involved; attending to the meaning of 

quantities, not just how to compute them; and knowing and 

flexibly using different properties of operations” (NGA and 

CCSSO 2010, p. 6). In this study, the instructor provided 

the necessary scaffolding (e.g., explanations and prompts, 

visual-schematic diagrams to reduce cognitive memory 

load) to support these students as they independently solved 

word problems. This type of instruction warrants further 

validation as possible instructional practice for students 

with MD served in special education, where supplemental 

instructional supports for this population are not well defined 

(Fuchs et al. 2012).

The improved student outcomes in this study provide 

encouraging indications of the feasibility and potential effec-

tiveness of teaching problem solving with SBI. Implementa-

tion of SBI in this study required relatively few resources. 

Although Dustin progressed more slowly than the other two 

participants and took 14 intervention sessions of 30 min 

each, all three students reached mastery (80% accuracy on 

WPS tests) in a relatively short period of time (four to eight 

sessions following SBI implementation). These findings 

suggest that SBI provided an effective means for students 

with MD to learn problem solving and that 12–14 sessions 

of 30 min each is a feasible goal for these students in typi-

cal school contexts. Findings also suggest that implementa-

tion of SBI does not require additional resources beyond the 

teacher and student materials used in the study. Furthermore, 

participants’ perceptions indicated a high acceptability of 

the SBI approach, supporting its feasibility.

7.2  Limitations and future directions

There are several limitations associated with this study 

that may affect its implications for research and practice. 

One limitation of this study has to do with the nature of 

the student participants and the types of problems taught. 

The three participants were fifth-grade students with MD, 

who received instruction in solving word problems involv-

ing equal groups, unit rate, and array problems due to their 

novice skill level in solving these problems at the start of the 

study. However, these problems are typically taught in third 

grade in the CCSS-M. Thus the results in this study may be 

limited to this subgroup of students. Second, the researcher 

rather than the classroom teacher provided all of the instruc-

tion, which limits evidence of the effects of the intervention 

when implemented by other instructors. Third, this study 

did not document the transfer of skills to problems found in 

typical textbooks (multistep problems) or standardized tests. 

Fourth, some word problems in the study were not realis-

tic and possibly scoring of their intended solutions ignored 

realistic considerations. For example, in the problem about 

determining the total number of feet of wood used when 

making 7 shelves that are 2 feet long each, the accepted 

answer of 14 feet may not be realistic when considering the 

loss of wood that occurs with the process of sawing. Future 

research studies should address these limitations by ensuring 

that word problems and scoring of their solutions account 

for realistic considerations, teaching developmentally appro-

priate content to students with MD, replicating the positive 

effects in this study with several different instructors, and 
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ensuring student transfer of skills to more complex skills and 

advanced mathematics. Also an important aspect for future 

research is the collection of data on student–teacher interac-

tions during instruction and analysis of student answers to 

provide insights into students’ mathematical reasoning and 

sense-making.

In summary, SBI is a promising approach for enhancing 

the word problem-solving performance of students with MD. 

Although this study shows promise that students with MD 

can learn to solve word problems, more research is needed 

to replicate the findings and to evaluate the intervention for 

other mathematical skills.
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